If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+3x-72=0
a = 5; b = 3; c = -72;
Δ = b2-4ac
Δ = 32-4·5·(-72)
Δ = 1449
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1449}=\sqrt{9*161}=\sqrt{9}*\sqrt{161}=3\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{161}}{2*5}=\frac{-3-3\sqrt{161}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{161}}{2*5}=\frac{-3+3\sqrt{161}}{10} $
| 7/12+x-5/4=x-10/3 | | 3/8-9=13+x/8 | | 6*10=x(x+7) | | 6m-2.05=m+12.05 | | 2(5x-1)-3x+4)=31 | | 1+12x=-20+9x | | 2/3(3x-6)=4x+3 | | 5-4x=6-2 | | 60=x^2+7x | | 50+80+65+90=x | | 3x/5+44=12x/25=8 | | Y(y-40)=180 | | 5-3(10-2x)=4x+5 | | -2(6x-4)=68 | | 2s=5s÷2-s÷4 | | 70+.60x=50+.80x | | 3n+7-7n=34-11n+29 | | 5-4x=0.15x18 | | 5(m+5)=36 | | 7=5/6x-3 | | X+.5x=945 | | -28+4x=12 | | 3r=2r+5 | | (13x+20)=(10x+47) | | 22t=32(.75-t) | | 3/2x-4=5/2x+2 | | 2/3(9x+21)=-10 | | |.6x+17|=x^2-10 | | 7a-2=2a-22 | | 53/9x=159 | | 7y-9=72 | | (62+25)x=350+25x |